Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions
نویسندگان
چکیده
منابع مشابه
Time-Splitting Schemes for Fractional Differential Equations I: Smooth Solutions
We propose three time-splitting schemes for nonlinear time-fractional differential equations with smooth solutions, where the order of the fractional derivative is 0 < α < 1. While one of the schemes is of order α, the other two schemes are of order 1 + α and 2 − α and thus they can be combined to provide flexible numerical methods with convergence order no less than 3/2. We prove the convergen...
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملHigher order numerical methods for solving fractional differential equations
In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is ...
متن کاملComparing Numerical Methods for Solving Nonlinear Fractional Order Differential Equations
This paper is a result of comparison of some available numerical methods for solving nonlinear fractional order ordinary differential equations. These methods are compared according to their computational complexity, convergence rate, and approximation error. The present study shows that when these methods are applied to nonlinear differential equations of fractional order, they have different ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2017
ISSN: 0045-7825
DOI: 10.1016/j.cma.2017.08.029